Title :
A Theoretical Framework for LMS MIMO Communication Systems Performance Analysis
Author :
Alfano, Giuseppa ; De Maio, Antonio ; Tulino, Antonia Maria
Author_Institution :
DELEN, Politec. di Torino, Turin, Italy
Abstract :
A statistical model for Land Mobile Satellite (LMS) channels, where transmitters and receivers are equipped with multiple antennas, is introduced. Several spectral statistics are given, which allow the theoretical performance analysis of the newly proposed channel model from both a communication and an information-theoretic point of view. Specifically, joint and marginal statistics of the squared singular-values of the channel matrix are evaluated, paving the way for the performance analysis under ergodic and nonergodic assumptions on the channel behavior. The capacity-achieving input covariance matrix, and the corresponding ergodic capacity, assuming perfect receive-side information but making different assumptions on the amount of channel knowledge at the transmitter, are derived. We obtain exact results, but for the case when perfect channel knowledge is assumed at both ends of the link, for which we provide an upper bound to the ergodic capacity. In the nonergodic scenario, we compute the outage probability in absence of power-control, and discuss the asymptotic Gaussianity of the mutual information, which strongly depends on the overall number of degrees of freedom available on the channel. Design guidelines for multiantenna LMS channels are gained studying the low signal-to-noise ratio (SNR) behavior of the capacity, still under the assumption of absence of knowledge of the channel matrix (or its statistics) at the transmitter. The results are illustrated through several examples, aimed at assessing the impact on the performance of the diversity order and/or the line-of-sight (LOS) fluctuations.
Keywords :
MIMO communication; antenna arrays; channel capacity; covariance matrices; diversity reception; land mobile radio; least mean squares methods; mobile satellite communication; probability; radio reception; radio transmitters; LMS MIMO communication systems performance analysis; capacity achieving input covariance matrix; channel matrix knowledge; diversity order; ergodic assumption; ergodic capacity; land mobile satellite channel; line-of-sight fluctuation; multiantenna LMS channel; nonergodic assumption; outage probability; receive side information; spectral statistics; Covariance matrix; Eigenvalues and eigenfunctions; Jacobian matrices; Joints; Least squares approximation; MIMO; Transmitters; Asymptotic analysis; LMS; eigenanalysis; multiple-input multiple-output (MIMO); noncentral Wishart;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2010.2070230