• DocumentCode
    1355889
  • Title

    The smallest length of eight-dimensional binary linear codes with prescribed minimum distance

  • Author

    Bouyukhev, I. ; Jaffe, David B. ; Vavrek, Vesselin

  • Author_Institution
    Inst. of Math. & Inf., Bulgarian Acad. of Sci., Veliko Tarnovo, Bulgaria
  • Volume
    46
  • Issue
    4
  • fYear
    2000
  • fDate
    7/1/2000 12:00:00 AM
  • Firstpage
    1539
  • Lastpage
    1544
  • Abstract
    Let n(8,d) be the smallest integer n for which a binary linear code of length n, dimension 8, and minimum distance d exists. We prove that n(8,18)=42, n(8,26)=58, n(8,28)=61, n(8,30)=65, n(8,34)=74, n(8,36)=77, n(8,38)=81, n(8,42)=89, and n(8,60)=124. After these results, all values of n(8,d) are known
  • Keywords
    binary codes; linear codes; eight-dimensional binary linear codes; minimum distance; n(8,18); n(8,26); n(8,28); n(8,30); n(8,34); n(8,36); n(8,38); n(8,42); n(8,60); n(8,d); Informatics; Linear code; Linear programming; Mathematics; Software tools; Statistics; Testing;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.850690
  • Filename
    850690