DocumentCode
1355889
Title
The smallest length of eight-dimensional binary linear codes with prescribed minimum distance
Author
Bouyukhev, I. ; Jaffe, David B. ; Vavrek, Vesselin
Author_Institution
Inst. of Math. & Inf., Bulgarian Acad. of Sci., Veliko Tarnovo, Bulgaria
Volume
46
Issue
4
fYear
2000
fDate
7/1/2000 12:00:00 AM
Firstpage
1539
Lastpage
1544
Abstract
Let n(8,d) be the smallest integer n for which a binary linear code of length n, dimension 8, and minimum distance d exists. We prove that n(8,18)=42, n(8,26)=58, n(8,28)=61, n(8,30)=65, n(8,34)=74, n(8,36)=77, n(8,38)=81, n(8,42)=89, and n(8,60)=124. After these results, all values of n(8,d) are known
Keywords
binary codes; linear codes; eight-dimensional binary linear codes; minimum distance; n(8,18); n(8,26); n(8,28); n(8,30); n(8,34); n(8,36); n(8,38); n(8,42); n(8,60); n(8,d); Informatics; Linear code; Linear programming; Mathematics; Software tools; Statistics; Testing;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/18.850690
Filename
850690
Link To Document