Title :
High-frequency ultrasound detection of the temporal evolution of protein cross linking in myocardial tissue
Author :
Hall, Christopher S. ; Dent, Catherine L. ; Scott, Michael J. ; Wickline, Samuel A.
Author_Institution :
Dept. of Cardiology, Barnes-Jewish North & Washington Univ. Sch. of Med., St. Louis, MO, USA
fDate :
7/1/2000 12:00:00 AM
Abstract :
The progressive increase in stiffening of the myocardium associated with the aging process and abetted by comorbid conditions such as diabetes may be linked to an excessive number of collagen cross links within the myocardial extra-cellular matrix. To determine whether ultrasound can delineate changes in the physical properties of heart tissue undergoing cross linking, the authors employed a model in which increased cross linking was induced by treating rat myocardial tissue with specific chemical fixatives. Rat hearts (n=5 each group) were arrested at end-diastole, insonified (30 to 50 MHz) fresh within a few minutes of excision in a phosphate buffered solution, placed in a fixative (10% formalin or 2.5% glutaraldehyde) and insonified at 30-minute intervals thereafter for 24 hours. Ultrasonic attenuation increased in tissues cross linked with formalin (maximal change: 27.2/spl plusmn/3.4 dB/cm) and glutaraldehyde (maximal change: 40.2/spl plusmn/5.6 dB/cm) over a 24-hour period. The frequency dependence of the attenuation coefficient increased as a function of the extent of collagen cross links in formalin (maximal change: 0.8/spl plusmn/0.3 dB/cm-MHz) and glutaraldehyde (maximal change: 0.9/spl plusmn/0.6 dB/cm-MHz). This study represents the first time that the precise time course of myocardial protein cross linking in situ has been characterized by using real time monitoring, and the physiologic effect has been delineated on microscopic material properties.
Keywords :
biomechanics; biomedical ultrasonics; cardiology; diseases; elasticity; muscle; proteins; 24 h; 30 min; 30 to 50 MHz; aging process; chemical fixatives; comorbid conditions; diabetes; formalin; glutaraldehyde; high-frequency ultrasound detection; microscopic material properties; myocardium stiffening; phosphate buffered solution; protein cross linking temporal evolution; rat hearts; rat myocardial tissue; real time monitoring; ultrasonic attenuation; Aging; Attenuation; Chemicals; Diabetes; Frequency dependence; Heart; Joining processes; Myocardium; Proteins; Ultrasonic imaging;
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on