DocumentCode :
1359886
Title :
Combinatorial discriminant analysis: supervised feature extraction that integrates global and local criteria
Author :
Chai, Jun ; Liu, Hongying ; Bao, Zhen
Author_Institution :
Nat. Lab. of Radar Signal Process., Xidian Univ., Xi´an, China
Volume :
45
Issue :
18
fYear :
2009
Firstpage :
934
Lastpage :
935
Abstract :
Supervised feature extraction (SFE) algorithms can be divided into two categories: those optimised by global criteria and those optimised by local ones. Proposed is a new approach designed by integrating global and local criteria, namely, combinatorial discriminant analysis (CDA), to perform SFE. It is shown that CDA inherits both the robustness of global criteria and the flexibility of local ones. Experimental comparisons with typical global and local SFE algorithms on real-world datasets empirically justify the superiority of CDA.
Keywords :
combinatorial mathematics; feature extraction; combinatorial discriminant analysis; global criteria; local criteria; supervised feature extraction;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2009.1423
Filename :
5226996
Link To Document :
بازگشت