DocumentCode :
13628
Title :
Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model
Author :
Voisin, Alexandre ; Krylov, Vladimir A. ; Moser, Gabriele ; Serpico, Sebastiano B. ; Zerubia, Josiane
Author_Institution :
Ayin team, INRIA, Sophia Antipolis Cedex , France
Volume :
10
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
96
Lastpage :
100
Abstract :
This letter addresses the problem of classifying synthetic aperture radar (SAR) images of urban areas by using a supervised Bayesian classification method via a contextual hierarchical approach. We develop a bivariate copula-based statistical model that combines amplitude SAR data and textural information, which is then plugged into a hierarchical Markov random field model. The contribution of this letter is thus the development of a novel hierarchical classification approach that uses a quad-tree model based on wavelet decomposition and an innovative statistical model. The performance of the developed approach is illustrated on a high-resolution satellite SAR image of urban areas.
Keywords :
Data models; Estimation; Feature extraction; Image resolution; Noise; Synthetic aperture radar; Urban areas; Hierarchical Markov random fields (MRFs); supervised classification; synthetic aperture radar (SAR); textural features; urban areas; wavelets;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2012.2193869
Filename :
6203366
Link To Document :
بازگشت