DocumentCode :
1363351
Title :
Evaluation of Three MRI-Based Anatomical Priors for Quantitative PET Brain Imaging
Author :
Vunckx, Kathleen ; Atre, Ameya ; Baete, Kristof ; Reilhac, Anthonin ; Deroose, Christophe M. ; Van Laere, Koen ; Nuyts, Johan
Author_Institution :
Dept. of Nucl. Med., K.U. Leuven, Leuven, Belgium
Volume :
31
Issue :
3
fYear :
2012
fDate :
3/1/2012 12:00:00 AM
Firstpage :
599
Lastpage :
612
Abstract :
In emission tomography, image reconstruction and therefore also tracer development and diagnosis may benefit from the use of anatomical side information obtained with other imaging modalities in the same subject, as it helps to correct for the partial volume effect. One way to implement this, is to use the anatomical image for defining the a priori distribution in a maximum-a-posteriori (MAP) reconstruction algorithm. In this contribution, we use the PET-SORTEO Monte Carlo simulator to evaluate the quantitative accuracy reached by three different anatomical priors when reconstructing positron emission tomography (PET) brain images, using volumetric magnetic resonance imaging (MRI) to provide the anatomical information. The priors are: 1) a prior especially developed for FDG PET brain imaging, which relies on a segmentation of the MR-image (Baete , 2004); 2) the joint entropy-prior (Nuyts, 2007); 3) a prior that encourages smoothness within a position dependent neighborhood, computed from the MR-image. The latter prior was recently proposed by our group in (Vunckx and Nuyts, 2010), and was based on the prior presented by Bowsher (2004). The two latter priors do not rely on an explicit segmentation, which makes them more generally applicable than a segmentation-based prior. All three priors produced a compromise between noise and bias that was clearly better than that obtained with postsmoothed maximum likelihood expectation maximization (MLEM) or MAP with a relative difference prior. The performance of the joint entropy prior was slightly worse than that of the other two priors. The performance of the segmentation-based prior is quite sensitive to the accuracy of the segmentation. In contrast to the joint entropy-prior, the Bowsher-prior is easily tuned and does not suffer from convergence problems.
Keywords :
Monte Carlo methods; biomedical MRI; brain; expectation-maximisation algorithm; image reconstruction; image segmentation; medical image processing; neurophysiology; positron emission tomography; Bowsher-prior; FDG PET brain imaging; MR-image segmentation; MRI-based anatomical priors evaluation; PET brain images; PET-SORTEO Monte Carlo simulator; anatomical image; anatomical information; anatomical side information; diagnosis; image reconstruction; imaging modalities; joint entropy-prior; maximum-a-posteriori reconstruction algorithm; partial volume effect; position dependent neighborhood; positron emission tomography; postsmoothed maximum likelihood expectation maximization; quantitative PET brain imaging; tracer development; volumetric magnetic resonance imaging; Brain modeling; Image reconstruction; Image segmentation; Lesions; Noise; Phantoms; Positron emission tomography; Anatomical priors; image reconstruction; magnetic resonance imaging (MRI); positron emission tomography (PET); quantitative accuracy; Algorithms; Brain; Brain Neoplasms; Computer Simulation; Entropy; Humans; Image Processing, Computer-Assisted; Magnetic Resonance Imaging; Monte Carlo Method; Phantoms, Imaging; Positron-Emission Tomography;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2011.2173766
Filename :
6062416
Link To Document :
بازگشت