DocumentCode :
1365007
Title :
Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty
Author :
Sanyal, Jibonananda ; Zhang, Song ; Dyer, Jamie ; Mercer, Andrew ; Amburn, Philip ; Moorhead, Robert J.
Volume :
16
Issue :
6
fYear :
2010
Firstpage :
1421
Lastpage :
1430
Abstract :
Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single midtroposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.
Keywords :
data visualisation; geophysics computing; weather forecasting; Noodles; bootstrapping; data transect plots; ensemble member standard deviation; glyph-based uncertainty visualization; interquartile range; isopressure colormaps; midtroposphere pressure surface height contour; numerical weather model ensemble uncertainty; numerical weather prediction ensembles; operational weather forecasting; perturbation potential temperature; perturbation pressure; spaghetti plots; visualization tool; water-vapor mixing ratio; Atmospheric modeling; Data visualization; Numerical models; Predictive models; Uncertainty; Weather forecasting; Uncertainty visualization; geographic/geospatial visualization; glyph-based techniques; qualitative evaluation; timevarying data; weather ensemble;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2010.181
Filename :
5613483
Link To Document :
بازگشت