DocumentCode :
1365331
Title :
A comparison of constrained trajectory segment models for large vocabulary speech recognition
Author :
Kannan, Ashvin ; Ostendorf, Mari
Author_Institution :
Nuance Commun., Menlo Park, CA, USA
Volume :
6
Issue :
3
fYear :
1998
fDate :
5/1/1998 12:00:00 AM
Firstpage :
303
Lastpage :
306
Abstract :
This paper compares parametric and nonparametric constrained-mean trajectory segment models for large vocabulary speech recognition, extending distribution clustering techniques to handle polynomial mean trajectory models for robust parameter estimation. The parametric model has fewer free parameters and gives similar recognition performance to the nonparametric model, but has higher recognition costs
Keywords :
parameter estimation; pattern recognition; speech recognition; constrained trajectory segment models; distribution clustering techniques; large vocabulary speech recognition; nonparametric constrained-mean trajectory; parametric constrained-mean trajectory; polynomial mean trajectory models; recognition costs; recognition performance; robust parameter estimation; Context modeling; Gaussian distribution; Gaussian processes; Hidden Markov models; Parametric statistics; Polynomials; Speech recognition; Stochastic processes; Trajectory; Vocabulary;
fLanguage :
English
Journal_Title :
Speech and Audio Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6676
Type :
jour
DOI :
10.1109/89.668825
Filename :
668825
Link To Document :
بازگشت