Title :
The Effect of Insulating Layers on the Performance of Implanted Antennas
Author :
Merli, F. ; Fuchs, B. ; Mosig, J.R. ; Skrivervik, A.K.
Author_Institution :
Lab. d´Electromagn. et d´Acoust. (LEMA), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
Abstract :
This work presents the analysis of the influence of insulation on implanted antennas for biotelemetry applications in the Medical Device Radiocommunications Service band. Our goal is finding the insulation properties that facilitate power transmission, thus enhancing the communication between the implanted antenna and an external receiver. For this purpose, it has been found that a simplified model of human tissues based on spherical geometries excited by ideal sources (electric dipole, magnetic dipole and Huygens source) provides reasonable accuracy while remaining very tractable due to its analytical formulation. Our results show that a proper choice of the biocompatible internal insulation material can improve the radiation efficiency of the implanted antenna (up to six times for the investigated cases). External insulation facilitates the electromagnetic transition from the biological tissue to the outer free space, reducing the power absorbed by the human body. Summarizing, this work gives insights on the enhancement of power transmission, obtained with the use of both internal, biocompatible and external, flexible insulations. Therefore, it provides useful information for the design of implanted antennas.
Keywords :
antenna radiation patterns; biological tissues; biomedical telemetry; insulating materials; prosthetics; biocompatible internal insulation material; biological tissue; biotelemetry; external receiver; human tissues; implanted antennas; insulating layers; power transmission; radiation efficiency; Antennas; Biological system modeling; Dielectrics; Electromagnetics; Insulation; Manganese; Materials; Biocompatible antenna; Medical Device Radiocommunications Service (MedRadio); implanted antennas; insulation; spherical wave expansion;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2010.2090465