DocumentCode :
1368542
Title :
Hyperspectral imagery: clutter adaptation in anomaly detection
Author :
Schweizer, Susan M. ; Moura, José M F
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
Volume :
46
Issue :
5
fYear :
2000
fDate :
8/1/2000 12:00:00 AM
Firstpage :
1855
Lastpage :
1871
Abstract :
Hyperspectral sensors are passive sensors that simultaneously record images for hundreds of contiguous and narrowly spaced regions of the electromagnetic spectrum. Each image corresponds to the same ground scene, thus creating a cube of images that contain both spatial and spectral information about the objects and backgrounds in the scene. In this paper, we present an adaptive anomaly detector designed assuming that the background clutter in the hyperspectral imagery is a three-dimensional Gauss-Markov random field. This model leads to an efficient and effective algorithm for discriminating man-made objects (the anomalies) in real hyperspectral imagery. The major focus of the paper is on the adaptive stage of the detector, i.e., the estimation of the Gauss-Markov random field parameters. We develop three methods: maximum-likelihood; least squares; and approximate maximum-likelihood. We study these approaches along three directions: estimation error performance, computational cost, and detection performance. In terms of estimation error, we derive the Cramer-Rao bounds and carry out Monte Carlo simulation studies that show that the three estimation procedures have similar performance when the fields are highly correlated, as is often the case with real hyperspectral imagery. The approximate maximum-likelihood method has a clear advantage from the computational point of view. Finally, we test extensively with real hyperspectral imagery the adaptive anomaly detector incorporating either the least squares or the approximate maximum-likelihood estimators. Its performance compares very favorably with that of the RX algorithm
Keywords :
Gaussian processes; Markov processes; Monte Carlo methods; adaptive signal processing; clutter; image recognition; least squares approximations; maximum likelihood estimation; object detection; remote sensing; Cramer-Rao bounds; Monte Carlo simulation studies; adaptive anomaly detector; anomaly detection; approximate maximum-likelihood; clutter adaptation; computational cost; cost; detection performance; estimation error performance; ground scene; hyperspectral imagery; least squares; man-made objects; maximum-likelihood; performance; spatial information; spectral information; three-dimensional Gauss-Markov random field; Detectors; Estimation error; Gaussian processes; Hyperspectral imaging; Hyperspectral sensors; Image sensors; Layout; Least squares approximation; Maximum likelihood detection; Maximum likelihood estimation;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.857796
Filename :
857796
Link To Document :
بازگشت