Title :
Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits
Author :
Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R.A. ; Blanton, R.D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
Abstract :
In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.
Keywords :
integrated circuit manufacture; linear programming; nanoelectronics; statistical analysis; 2D interpolation; Kriging prediction; Nyquist rate; k-LSE estimation; linear programming problem; low-cost silicon characterization; nanoscale integrated circuits; nanoscale manufacturing process; spatial frequency domain; statistical framework; virtual probe; Compressed sensing; Frequency domain analysis; Integrated circuit reliability; Interpolation; Statistical analysis; Virtual manufacturing; Characterization; compressed sensing; integrated circuit; process variation;
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
DOI :
10.1109/TCAD.2011.2164536