Title :
In Vivo Impedance Imaging With Total Variation Regularization
Author :
Borsic, Andrea ; Graham, Brad M. ; Adler, Andy ; Lionheart, William R B
Author_Institution :
Thayer Sch. of Eng., Dartmouth Coll., Hanover, NH, USA
Abstract :
We show that electrical impedance tomography (EIT) image reconstruction algorithms with regularization based on the total variation (TV) functional are suitable for in vivo imaging of physiological data. This reconstruction approach helps to preserve discontinuities in reconstructed profiles, such as step changes in electrical properties at interorgan boundaries, which are typically smoothed by traditional reconstruction algorithms. The use of the TV functional for regularization leads to the minimization of a nondifferentiable objective function in the inverse formulation. This cannot be efficiently solved with traditional optimization techniques such as the Newton method. We explore two implementations methods for regularization with the TV functional: the lagged diffusivity method and the primal dual-interior point method (PD-IPM). First we clarify the implementation details of these algorithms for EIT reconstruction. Next, we analyze the performance of these algorithms on noisy simulated data. Finally, we show reconstructed EIT images of in vivo data for ventilation and gastric emptying studies. In comparison to traditional quadratic regularization, TV regulariza tion shows improved ability to reconstruct sharp contrasts.
Keywords :
electric impedance imaging; image reconstruction; medical image processing; Newton method; electrical impedance tomography; image reconstruction; impedance imaging; interorgan boundaries; lagged diffusivity method; primal dual interior point method; total variation regularization; Algorithm design and analysis; Image reconstruction; Impedance; In vivo; Newton method; Optimization methods; Performance analysis; Reconstruction algorithms; TV; Tomography; Electrical impedance tomography (EIT); lagged diffusivity; primal dual interior point method; regularization; total variation (TV); Algorithms; Animals; Computer Simulation; Electric Impedance; Gastric Emptying; Humans; Image Processing, Computer-Assisted; Least-Squares Analysis; Lung Injury; Phantoms, Imaging; Respiration; Swine; Thorax; Tomography;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2009.2022540