Title :
Computational Complexity Certification for Real-Time MPC With Input Constraints Based on the Fast Gradient Method
Author :
Richter, Stefan ; Jones, Colin Neil ; Morari, Manfred
Author_Institution :
Autom. Control Lab., ETH Zurich, Zürich, Switzerland
fDate :
6/1/2012 12:00:00 AM
Abstract :
This paper proposes to use Nesterov´s fast gradient method for the solution of linear quadratic model predictive control (MPC) problems with input constraints. The main focus is on the method´s a priori computational complexity certification which consists of deriving lower iteration bounds such that a solution of pre-specified suboptimality is obtained for any possible state of the system. We investigate cold- and warm-starting strategies and provide an easily computable lower iteration bound for cold-starting and an asymptotic characterization of the bounds for warm-starting. Moreover, we characterize the set of MPC problems for which small iteration bounds and thus short solution times are expected. The theoretical findings and the practical relevance of the obtained lower iteration bounds are underpinned by various numerical examples and compared to certification results for a primal-dual interior point method.
Keywords :
computational complexity; gradient methods; predictive control; Nesterov fast gradient method; bound asymptotic characterization; cold-and-warm-starting strategies; computational complexity certification; input constraints; linear quadratic model predictive control problems; lower iteration bounds; primal-dual interior point method; real-time MPC; Computational complexity; Convergence; Gradient methods; Stability criteria; Upper bound; Vectors; Certification; gradient methods; optimization methods; predictive control;
Journal_Title :
Automatic Control, IEEE Transactions on
DOI :
10.1109/TAC.2011.2176389