DocumentCode :
1378102
Title :
Approximating Bayesian belief networks by arc removal
Author :
Van Engelen, Robert A.
Author_Institution :
Dept. of Comput. Sci., Leiden Univ., Netherlands
Volume :
19
Issue :
8
fYear :
1997
fDate :
8/1/1997 12:00:00 AM
Firstpage :
916
Lastpage :
920
Abstract :
I propose a general framework for approximating Bayesian belief networks through model simplification by arc removal. Given an upper bound on the absolute error allowed on the prior and posterior probability distributions of the approximated network, a subset of arcs is removed, thereby speeding up probabilistic inference
Keywords :
directed graphs; inference mechanisms; probability; uncertainty handling; Bayesian belief networks; absolute error; arc removal; model simplification; posterior probability distribution; prior probability distribution; probabilistic inference; Application software; Bayesian methods; Computational modeling; Decision making; Frequency estimation; Information theory; Medical diagnosis; Probability distribution; Uncertainty; Upper bound;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.608295
Filename :
608295
Link To Document :
بازگشت