Title :
Efficient collision detection using bounding volume hierarchies of k-DOPs
Author :
Klosowski, James T. ; Held, Martin ; Mitchell, Joseph S B ; Sowizral, Henry ; Zikan, Karel
Author_Institution :
Dept. of Appl. Math. & Stat., State Univ. of New York, Stony Brook, NY, USA
Abstract :
Collision detection is of paramount importance for many applications in computer graphics and visualization. Typically, the input to a collision detection algorithm is a large number of geometric objects comprising an environment, together with a set of objects moving within the environment. In addition to determining accurately the contacts that occur between pairs of objects, one needs also to do so at real-time rates. Applications such as haptic force feedback can require over 1000 collision queries per second. We develop and analyze a method, based on bounding-volume hierarchies, for efficient collision detection for objects moving within highly complex environments. Our choice of bounding volume is to use a discrete orientation polytope (k-DOP), a convex polytope whose facets are determined by halfspaces whose outward normals come from a small fixed set of k orientations. We compare a variety of methods for constructing hierarchies (BV-trees) of bounding k-DOPs. Further, we propose algorithms for maintaining an effective BV-tree of k-DOPs for moving objects, as they rotate, and for performing fast collision detection using BV-trees of the moving objects and of the environment. Our algorithms have been implemented and tested. We provide experimental evidence showing that our approach yields substantially faster collision detection than previous methods
Keywords :
computational geometry; data visualisation; real-time systems; trees (mathematics); user interfaces; virtual reality; BV-trees; bounding volume hierarchies; bounding-volume hierarchies; collision detection; computer graphics; convex polytope; discrete orientation polytope; geometric model; geometric objects; haptic force feedback; k-DOP; moving objects; real-time; virtual reality; visualization; Application software; Computational modeling; Computer graphics; Detection algorithms; Face detection; Haptic interfaces; Object detection; Solid modeling; Virtual environment; Visualization;
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
DOI :
10.1109/2945.675649