Title :
Analysis of the Distance Between Two Classes for Tuning SVM Hyperparameters
Author :
Sun, Jiancheng ; Zheng, Chongxun ; Li, Xiaohe ; Zhou, Yatong
Author_Institution :
Sch. of Electron., Jiangxi Univ. of Finance & Econ., Nanchang, China
Abstract :
An important step in the construction of a support vector machine (SVM) is to select optimal hyperparameters. This paper proposes a novel method for tuning the hyperparameters by maximizing the distance between two classes (DBTC) in the feature space. With a normalized kernel function, we find that DBTC can be used as a class separability criterion since the between-class separation and the within-class data distribution are implicitly taken into account. Employing DBTC as an objective function, we develop a gradient-based algorithm to search the optimal kernel parameter. On the basis of the geometric analysis and simulation results, we find that the optimal algorithm and the initialization problem become very simple. Experimental results on the synthetic and real-world data show that the proposed method consistently outperforms other existing hyperparameter tuning methods.
Keywords :
geometry; gradient methods; optimisation; pattern classification; search problems; support vector machines; between-class separation; class separability criterion; data classification; distance between two classes maximisation; geometric analysis; gradient-based algorithm; initialization problem; normalized kernel function; optimal algorithm; optimal kernel parameter searching; support vector machine hyperparameters tuning; within-class data distribution; Class separability; data classification; kernel parameter; support vector machine (SVM);
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2009.2036999