Title :
Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model
Author :
Eilenberg, Michael F. ; Geyer, Hartmut ; Herr, Hugh
Author_Institution :
Mech. Eng. Dept., Massachusetts Inst. of Technol. (MIT), Cambridge, MA, USA
fDate :
4/1/2010 12:00:00 AM
Abstract :
Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present an adaptive muscle-reflex controller, based on simulation studies, that utilizes an ankle plantar flexor comprising a Hill-type muscle with a positive force feedback reflex. The model´s parameters were fitted to match the human ankle´s torque-angle profile as obtained from level-ground walking measurements of a weight and height-matched intact subject walking at 1 m/s. Using this single parameter set, clinical trials were conducted with a transtibial amputee walking on level ground, ramp ascent, and ramp descent conditions. During these trials, an adaptation of prosthetic ankle work was observed in response to ground slope variation, in a manner comparable to intact subjects, without the difficulties of explicit terrain sensing. Specifically, the energy provided by the prosthesis was directly correlated to the ground slope angle. This study highlights the importance of neuromuscular controllers for enhancing the adaptiveness of powered prosthetic devices across varied terrain surfaces.
Keywords :
biological organs; feedback; gait analysis; medical control systems; muscle; prosthetics; Hill-type muscle; adaptive muscle-reflex controller; ankle plantar flexor; height-matched intact subject walking; level-ground walking measurement; neuromuscular model; positive force feedback reflex; powered ankle-foot prosthesis; torque-angle profile; transtibial amputee walking; Neuromuscular model; powered prosthesis; prosthesis control; terrain adaptation; Algorithms; Amputees; Ankle; Ankle Joint; Artificial Limbs; Data Collection; Foot; Humans; Microcomputers; Models, Anatomic; Models, Neurological; Muscle, Skeletal; Prosthesis Design; Reflex;
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
DOI :
10.1109/TNSRE.2009.2039620