DocumentCode :
1382693
Title :
Open system architecture modular tool kit for motion and machining process control
Author :
Erol, N. Arda ; Altintas, Yusuf ; Ito, Mabo Robert
Author_Institution :
Spectrum Signals Inc., Burnaby, BC, Canada
Volume :
5
Issue :
3
fYear :
2000
fDate :
9/1/2000 12:00:00 AM
Firstpage :
281
Lastpage :
291
Abstract :
A user-friendly reconfigurable and modular monitoring and control system for computerized numerical control (CNC) machine tool control and machining process monitoring is described. The main part of the system is a fully integrated combination of a real-time preemptive operating system (ORTS-DSP) for machine-level soft real-time tasks running on digital signal processor (DSP) boards and an enhanced Windows-NT-based environment (ORTS-PC/NT), running on a PC, for applications such as high-level operator-machine interfaces and high-level communications with the ORTS-DSP tasks on the DSP boards. A transparent communication protocol allows connection between software modules on the same or different DSP boards and the host Windows NT computers. The communication connections can be set up at runtime via a scripting language. ORTS allows modular integration of new functions developed in the C language, and can be reconfigured to control robots, machine tools, or other processes, using simple script commands. The system can be used as an architecture modular operating system for the progressive development of real-time signal processing, motion, and process control applications. Sample applications for machine tool control and sensor-assisted machining applications are presented. An adjunct component of the above system is a module called the intelligent machining module (IMM) which is intended to provide an easy-to-use subsystem for sensor-assisted machining. IMM is a fast, synchronous, runtime configurable signal processing network that can be reconfigured by means of plug-in software modules (PIMs) to form a sensor-based control or signal processing system for applications that can take advantage of synchronous processing. Examples of existing PIMs are peak and average detectors, fast Fourier transforms, and control algorithms. IMM can be used as an integral part of the above system, or as a stand-alone subsystem, or integrated with semi-open commercial CNC machines
Keywords :
computerised numerical control; digital signal processing chips; machine tools; machining; motion control; open systems; process control; process monitoring; enhanced Windows-NT-based environment; high-level communications; high-level operator-machine interfaces; intelligent machining module; machine-level soft real-time tasks; machining process; open system architecture modular tool kit; plug-in software modules; real-time preemptive operating system; runtime configurable signal processing network; scripting language; sensor-assisted machining; software modules; transparent communication protocol; Application software; Computer numerical control; Control systems; Digital signal processing; Machine tools; Machining; Open systems; Process control; Real time systems; Signal processing algorithms;
fLanguage :
English
Journal_Title :
Mechatronics, IEEE/ASME Transactions on
Publisher :
ieee
ISSN :
1083-4435
Type :
jour
DOI :
10.1109/3516.868920
Filename :
868920
Link To Document :
بازگشت