Title :
A test to determine the multivariate normality of a data set
Author :
Smith, Stephen P. ; Jain, Anil K.
Author_Institution :
Northrop Res. & Technol. Center, Palos Verdes Peninsula, CA, USA
Abstract :
A test is described for multivariate normality that is useful in pattern recognition. The test is based on the Friedman-Rafsky (1979) multivariate extension of the Wald-Wolfowitz runs test. The test data are combined with a multivariate swarm of points following the normal distribution generated with mean vector and covariance matrix estimated from the test data. The minimal spanning tree of this resultant ensemble of points is computed and the count of the interpopulation edges in the minimal spanning tree is used as a test statistic. The simulation studied both the null case of the test and one simple deviation from normality. Two conclusions are made from this study. First, the test can be conservatively applied by using the asymptotic normality of the test statistic, even for small sample sizes. Second, the power of the test appears reasonable, especially in high dimensions. Monte Carlo experiments were performed to determine if the test is reliable in high dimensions with moderate sample size. The method is compared to other such tests available in the literature.<>
Keywords :
Monte Carlo methods; interpolation; pattern recognition; trees (mathematics); Monte Carlo method; Wald-Wolfowitz; data set; interpopulation; multivariate normality; pattern recognition; spanning tree; test statistic; Automation; Books; Computer science; Joining processes; Laboratories; Pattern recognition; Performance evaluation; Research and development; Statistics; Testing;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on