DocumentCode :
1384220
Title :
Small field-of-view star identification using Bayesian decision theory
Author :
Clouse, Daniel S. ; Padgett, Curtis W.
Author_Institution :
Jet Propulsion Lab., California Univ., San Diego, La Jolla, CA, USA
Volume :
36
Issue :
3
fYear :
2000
fDate :
7/1/2000 12:00:00 AM
Firstpage :
773
Lastpage :
783
Abstract :
We describe a simple autonomous star identification algorithm which is effective using a narrow field of view (FOV) (2 deg), making the use of a science camera for star identification feasible. This work extends that of Padgett and Kreutz-Delgado (1997) by setting decision thresholds using Bayesian decision theory. Our simulations show that when positional accuracy of imaged stars is 0.5 pixel (standard deviation) and the apparent brightness deviates by 0.8 unit stellar magnitude, the algorithm correctly identifies 96.0% of the sensor orientations, with less than a 0.3% rate of false positives
Keywords :
Bayes methods; astronomy computing; decision theory; identification; Bayesian decision theory; autonomous star identification algorithm; brightness; narrow field of view; positional accuracy; science camera; sensor orientation; simulation; Bayesian methods; Cameras; Decision theory; Image sensors; Instruments; Position measurement; Propulsion; Space missions; Space vehicles; Sun;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/7.869495
Filename :
869495
Link To Document :
بازگشت