DocumentCode :
1385736
Title :
Large-scale atomistic modeling of nanoelectronic structures
Author :
Nakano, Aiichiro ; Bachlechner, Martina E. ; Branicio, Paulo ; Campbell, Timothy J. ; Ebbsjö, Ingvar ; Kalia, Rajiv K. ; Madhukar, Anupam ; Ogata, Shuji ; Omeltchenko, Andrey ; Rino, José P. ; Shimojo, Fuyuki ; Walsh, Phillip ; Vashishta, Priya
Author_Institution :
Dept. of Phys. & Astron., Louisiana State Univ., Baton Rouge, LA, USA
Volume :
47
Issue :
10
fYear :
2000
fDate :
10/1/2000 12:00:00 AM
Firstpage :
1804
Lastpage :
1810
Abstract :
Large-scale molecular-dynamics simulations are performed on parallel computers to study critical issues on ultrathin dielectric films and device reliability in next-decade semiconductor devices. New interatomic-potential models based on many-body, reactive, and quantum-mechanical schemes are used to study various atomic-scale effects: growth of oxide layers; dielectric properties of high-permittivity oxides; dislocation activities at semiconductor/dielectric interfaces; effects of amorphous layers and pixellation on atomic-level stresses in lattice-mismatched nanopixels; and nanoindentation testing of thin films. Enabling technologies for 10 to 100 million-atom simulations of nanoelectronic structures are discussed, which include multiresolution algorithms for molecular dynamics, load balancing, and data management. In ten years, this scalable software infrastructure will enable trillion-atom simulations of realistic device structures with sizes well beyond μm on petaflop computers
Keywords :
crystal defects; dielectric thin films; indentation; molecular dynamics method; nanotechnology; semiconductor device models; atomic-scale effects; device reliability; dislocation activities; high-permittivity oxides; interatomic-potential models; large-scale atomistic modeling; lattice-mismatched nanopixels; load balancing; molecular-dynamics simulations; multiresolution algorithms; nanoelectronic structures; nanoindentation testing; next-decade semiconductor devices; oxide layers; pixellation; quantum-mechanical schemes; scalable software infrastructure; semiconductor/dielectric interfaces; ultrathin dielectric films; Atomic layer deposition; Computational modeling; Computer simulation; Concurrent computing; Dielectric films; Dielectric thin films; Large-scale systems; Nanostructures; Semiconductor device reliability; Semiconductor devices;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/16.870551
Filename :
870551
Link To Document :
بازگشت