DocumentCode :
1387498
Title :
A 65 nm 0.165 fJ/Bit/Search 256 ,\\times, 144 TCAM Macro Design for IPv6 Lookup Tables
Author :
Huang, Po-Tsang ; Hwang, Wei
Author_Institution :
Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan
Volume :
46
Issue :
2
fYear :
2011
Firstpage :
507
Lastpage :
519
Abstract :
Ternary content addressable memory (TCAM) is extensively adopted in network systems. As routing tables become larger, energy consumption and leakage current become increasingly important issues in the design of TCAM in nano-scale technologies. This work presents a novel 65 nm energy-efficient TCAM macro design for IPv6 applications. The proposed TCAM employs the concept of architecture and circuit co-design. To achieve an energy-efficient TCAM architecture, a butterfly match-line scheme and a hierarchy search-line scheme are developed to reduce significantly both the search time and power consumption. The match-lines are also implemented using noise-tolerant XOR-based conditional keepers to reduce not only the search time but also the power consumption. To reduce the increasing leakage power in advanced technologies, the proposed TCAM design utilizes two power gating techniques, namely super cut-off power gating and multi-mode data-retention power gating. An energy-efficient 256 × 144 TCAM macro is implemented using UMC 65 nm CMOS technology, and the experimental results demonstrate a leakage power reduction of 19.3% and an energy metric of the TCAM macro of 0.165 fJ/bit/search.
Keywords :
CMOS integrated circuits; content-addressable storage; leakage currents; network routing; table lookup; CMOS technology; IPv6 lookup tables; TCAM macro design; butterfly match-line scheme; circuit co-design; energy consumption; hierarchy search-line scheme; leakage current; multimode data-retention power gating; noise-tolerant XOR-based conditional keepers; routing tables; size 65 nm; super cut-off power gating; ternary content addressable memory; Butterfly match-line; TCAM; XOR conditional keeper; hierarchy search-line; memory; power gating;
fLanguage :
English
Journal_Title :
Solid-State Circuits, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9200
Type :
jour
DOI :
10.1109/JSSC.2010.2082270
Filename :
5643935
Link To Document :
بازگشت