DocumentCode
1390802
Title
Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network
Author
Liu, Xiang-Qun ; Zhang, Hong-Yue ; Liu, Jun ; Yang, Jing
Author_Institution
Dept. of Autom. Control, Beijing Univ. of Aeronaut. & Astronaut., China
Volume
47
Issue
5
fYear
2000
fDate
10/1/2000 12:00:00 AM
Firstpage
1021
Lastpage
1030
Abstract
In this paper, fault detection and diagnosis of a permanent-magnet DC motor is discussed. Parameter estimation based on block-pulse function series is used to estimate the continuous-time model of the motor. The electromechanical parameters of the motor can be obtained from the estimated model parameters. The relative changes of electromechanical parameters are used to detect motor faults. A multilayer perceptron neural network is used to isolate faults based on the patterns of parameter changes. Experiments with a real motor validate the feasibility of the combined use of parameter estimation and neural network classification for fault detection and isolation of the motor
Keywords
DC motors; electric machine analysis computing; fault diagnosis; multilayer perceptrons; parameter estimation; permanent magnet motors; block-pulse function series; continuous-time model estimation; electromechanical parameters; fault detection; fault diagnosis; motor faults detection; multilayer perceptron neural network; neural network; parameter estimation; permanent-magnet DC motor; DC motors; Extraterrestrial measurements; Fault detection; Fault diagnosis; Monitoring; Neural networks; Parameter estimation; Particle measurements; Signal analysis; Testing;
fLanguage
English
Journal_Title
Industrial Electronics, IEEE Transactions on
Publisher
ieee
ISSN
0278-0046
Type
jour
DOI
10.1109/41.873210
Filename
873210
Link To Document