Title :
Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network
Author :
Liu, Xiang-Qun ; Zhang, Hong-Yue ; Liu, Jun ; Yang, Jing
Author_Institution :
Dept. of Autom. Control, Beijing Univ. of Aeronaut. & Astronaut., China
fDate :
10/1/2000 12:00:00 AM
Abstract :
In this paper, fault detection and diagnosis of a permanent-magnet DC motor is discussed. Parameter estimation based on block-pulse function series is used to estimate the continuous-time model of the motor. The electromechanical parameters of the motor can be obtained from the estimated model parameters. The relative changes of electromechanical parameters are used to detect motor faults. A multilayer perceptron neural network is used to isolate faults based on the patterns of parameter changes. Experiments with a real motor validate the feasibility of the combined use of parameter estimation and neural network classification for fault detection and isolation of the motor
Keywords :
DC motors; electric machine analysis computing; fault diagnosis; multilayer perceptrons; parameter estimation; permanent magnet motors; block-pulse function series; continuous-time model estimation; electromechanical parameters; fault detection; fault diagnosis; motor faults detection; multilayer perceptron neural network; neural network; parameter estimation; permanent-magnet DC motor; DC motors; Extraterrestrial measurements; Fault detection; Fault diagnosis; Monitoring; Neural networks; Parameter estimation; Particle measurements; Signal analysis; Testing;
Journal_Title :
Industrial Electronics, IEEE Transactions on