Title :
Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms
Author :
Peeters, Joris ; Cools, Kristof ; Bogaert, Ignace ; Olyslager, Femke ; De Zutter, Daniël
Author_Institution :
Dept. of Inf. Technol. (INTEC), Ghent Univ., Gent, Belgium
fDate :
4/1/2010 12:00:00 AM
Abstract :
Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, the low frequency instability is removed while still maintaining the inherent accuracy of the EFIE. It was also demonstrated that the spectral properties of the Caldero-n preconditioner are conserved during discretization if the EFIE operator is discretized with Rao-Wilton-Glisson expansion functions and the preconditioner with Buffa-Christiansen expansion functions. In this article we will show how the Calderon multiplicative preconditioner (CMP) can be combined with fast multipole methods to accelerate the numerical solution, leading to an overall complexity of O(N logN) for the entire iterative solution. At low frequencies, where the CMP is most useful, the traditional multilevel fast multipole algorithm (MLFMA) is unstable and we apply the nondirectional stable plane wave MLFMA (NSPWMLFMA) that resolves the low frequency breakdown of the MLFMA. The combined algorithm will be called the CMP-NSPWMLFMA. Applying the CMP-NSPWMLFMA at open surfaces or very low frequencies leads to certain problems, which will be discussed in this article.
Keywords :
computational complexity; electric field integral equations; electromagnetic wave scattering; Buffa-Christiansen expansion functions; CMP-NSPWMLFMA; Calderon identities; EFIE operator; Rao-Wilton-Glisson expansion functions; dense matrix preconditioner; electric field integral equation; electromagnetic scattering; embedding Calderon multiplicative preconditioners; entire iterative solution; fast multipole methods; low frequency breakdown; low frequency instability; multilevel fast multipole algorithms; nondirectional stable plane wave MLFMA; numerical solution; numerical stability; perfect electric conductors; spectral properties; Acceleration; Conductors; Electric breakdown; Frequency; Information technology; Integral equations; Iterative methods; MLFMA; Resonance; Scattering; Electromagnetic scattering; fast solvers; numerical stability;
Journal_Title :
Antennas and Propagation, IEEE Transactions on
DOI :
10.1109/TAP.2010.2041145