DocumentCode :
139410
Title :
A neural network approach for nonlinear modelling of LDMOSFETs
Author :
Marinkovic, Zlatica ; Crupi, Giovanni ; Raffo, Antonio ; Bosi, Gianni ; Avolio, Gustavo ; Markovic, Vera ; Caddemi, Alina ; Vannini, Giorgio ; Schreurs, Dominique M. M.-P
Author_Institution :
Fac. of Electron. Eng., Univ. of Nis, Niš, Serbia
fYear :
2014
fDate :
2-4 April 2014
Firstpage :
1
Lastpage :
3
Abstract :
In this paper an artificial neural network approach for nonlinear modelling of a 10-W LDMOSFET is presented. The model extraction is based on DC and scattering parameter measurements. In particular, artificial neural networks are used to model the dependence of both DC drain current and intrinsic capacitances with respect to the intrinsic gate and drain voltages. The model validation is successfully achieved by comparing the simulation results with time-domain nonlinear measurements.
Keywords :
MOSFET; S-parameters; electronic engineering computing; neural nets; semiconductor device models; DC drain current; LDMOSFET; artificial neural network; model extraction; model validation; nonlinear modelling; power 10 W; scattering parameter measurements; time-domain nonlinear measurements; Artificial neural networks; Computational modeling; Integrated circuit modeling; Microwave transistors; Transistors; Voltage measurement; artificial neural network (ANN); high-power transistor; laterally diffused MOS (LDMOS); nonlinear measurements; nonlinear modelling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), 2014 International Workshop on
Conference_Location :
Leuven
Type :
conf
DOI :
10.1109/INMMIC.2014.6815074
Filename :
6815074
Link To Document :
بازگشت