DocumentCode :
1395746
Title :
Fast DFT algorithms for length N=q*2m
Author :
Bi, Guoan ; Chen, Yan Qiu
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore
Volume :
45
Issue :
6
fYear :
1998
fDate :
6/1/1998 12:00:00 AM
Firstpage :
685
Lastpage :
690
Abstract :
This paper presents a general split-radix algorithm which can flexibly compute the discrete Fourier transforms (DFT) of length q*2m where q is an odd integer. Comparisons with previously reported algorithms show that substantial savings on arithmetic operations can be made. Furthermore, a wider range of choices on different sequence lengths is naturally provided
Keywords :
computational complexity; discrete Fourier transforms; mathematics computing; signal processing; arithmetic operations reduction; discrete Fourier transforms; fast DFT algorithms; general split-radix algorithm; sequence lengths; Arithmetic; Bismuth; Circuits; Computational complexity; Differential equations; Digital signal processing; Discrete Fourier transforms; Helium; Signal processing algorithms;
fLanguage :
English
Journal_Title :
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7130
Type :
jour
DOI :
10.1109/82.686687
Filename :
686687
Link To Document :
بازگشت