DocumentCode :
1396008
Title :
A Multitransform Architecture for H.264/AVC High-Profile Coders
Author :
Hwangbo, Woong ; Kyung, Chong-Min
Author_Institution :
Dept. of Electr. Eng., KAIST, Daejeon, South Korea
Volume :
12
Issue :
3
fYear :
2010
fDate :
4/1/2010 12:00:00 AM
Firstpage :
157
Lastpage :
167
Abstract :
This paper presents a high-throughput, cost-effective implementation of six different integer transforms in the H.264/AVC high-profile coders, i.e., 4 ?? 4 forward, 4 ?? 4 inverse, forward Hadamard, inverse Hadamard, 8 ?? 8 forward, and 8 ?? 8 inverse transform, all integrated as a shared hardware. The 4 ?? 4 transform matrices are regularized by using permutation, partitioned into 2 ?? 2 blocks, and factored for maximal hardware sharing. By using two types of 4 ?? 4 transform matrices included in an 8 ?? 8 transform matrix, two different 8 ?? 8 transforms are both described as three steps and unified with minor modification. To improve throughput of the transform, two independent 4 ?? 4 transform blocks within the 8 ?? 8 transform block operate in parallel in the 4 ?? 4 transform mode, while the two-stage pipelined architecture is used in the 8 ?? 8 transform mode. Using 0.18-??m CMOS technology, the maximum operating frequency of the proposed multitransform architecture is 200 MHz, which achieves 4.1 Gpixels/sec throughput rate with the hardware cost of 63618 gates. Compared with existing designs, the proposed design delivers at least 54% higher throughput at 38% higher throughput/area ratio in Adaptive Block-size Transform (ABT) mode.
Keywords :
CMOS integrated circuits; Hadamard matrices; Hadamard transforms; video coding; 63618 gates; CMOS technology; H.264/AVC high-profile coders; adaptive block-size transform mode; forward Hadamard; integer transforms; inverse Hadamard; maximal hardware sharing; multitransform architecture; size 0.18 mum; transform blocks; transform matrices; two-stage pipelined architecture; DCT; H.264/AVC; Hadamard transform; IDCT; VLSI design; integer transform;
fLanguage :
English
Journal_Title :
Multimedia, IEEE Transactions on
Publisher :
ieee
ISSN :
1520-9210
Type :
jour
DOI :
10.1109/TMM.2010.2041099
Filename :
5398924
Link To Document :
بازگشت