DocumentCode :
1396084
Title :
Maximum likelihood estimation using square root information filters
Author :
Bierman, Gerald J. ; Belzer, Mitchell R. ; Vandergraft, James S. ; Porter, David W.
Volume :
35
Issue :
12
fYear :
1990
fDate :
12/1/1990 12:00:00 AM
Firstpage :
1293
Lastpage :
1298
Abstract :
The maximum likelihood parameter estimation algorithm is known to provide optimal estimates for linear time-invariant dynamic systems. However, the algorithm is computationally expensive and requires evaluations of the gradient of a log likelihood function and the Fisher information matrix. By using the square-root information filter, a numerically reliable algorithm to compute the required gradient and the Fisher information matrix is developed. The algorithm is a significant improvement over the methods based on the conventional Kalman filter. The square-root information filter relies on the use of orthogonal transformations that are well known for numerical reliability. This algorithm can be extended to real-time system identification and adaptive control
Keywords :
filtering and prediction theory; linear systems; matrix algebra; parameter estimation; probability; Fisher information matrix; adaptive control; gradient; linear time-invariant dynamic systems; maximum likelihood parameter estimation; orthogonal transformations; square root information filters; system identification; Covariance matrix; Equations; Extraterrestrial measurements; Helium; Information filters; Iterative algorithms; Maximum likelihood estimation; Noise measurement; Parameter estimation; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.61004
Filename :
61004
Link To Document :
بازگشت