Title :
Bases for Riemann–Roch Spaces of One-Point Divisors on an Optimal Tower of Function Fields
Author :
Noseda, Francesco ; Oliveira, Gilvan ; Quoos, Luciane
Author_Institution :
Inst. de Mat., Univ. Fed. do Rio de Janeiro, Rio de Janeiro, Brazil
fDate :
5/1/2012 12:00:00 AM
Abstract :
For applications in algebraic geometric codes, an explicit description of bases of Riemann-Roch spaces of divisors on function fields over finite fields is needed. We give an algorithm to compute such bases for one-point divisors, and Weierstrass semigroups over an optimal tower of function fields. We also explicitly compute Weierstrass semigroups till level eight.
Keywords :
Galois fields; algebraic geometric codes; group codes; Riemann-Roch space; Weierstrass semigroups; algebraic geometric codes; finite fields; function field tower; one-point divisors; Electronic mail; Generators; Information theory; Materials; Poles and towers; Poles and zeros; Vectors; Algebraic geometric codes; Riemann–Roch spaces; Weierstrass semigroup; tower of function fields;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2011.2179519