Title :
Existence of optimal prefix codes for infinite source alphabets
Author :
Linder, Tamás ; Tarokh, Vahid ; Zeger, Kenneth
Author_Institution :
Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA
fDate :
11/1/1997 12:00:00 AM
Abstract :
It is proven that for every random variable with a countably infinite set of outcomes and finite entropy there exists an optimal prefix code which can be constructed from Huffman codes for truncated versions of the random variable, and that the average lengths of any sequence of Huffman codes for the truncated versions converge to that of the optimal code. Also, it is shown that every optimal infinite code achieves Kraft´s inequality with equality
Keywords :
Huffman codes; entropy codes; source coding; Huffman codes; Kraft´s inequality; average sequence length; finite entropy; infinite source alphabets; optimal infinite code; optimal prefix codes existence; random variable; Conferences; Entropy; Error correction; Error correction codes; Error probability; Information theory; Random variables; Telecommunications; Welding;
Journal_Title :
Information Theory, IEEE Transactions on