Title :
QCA Systolic Array Design
Author :
Liang Lu ; Weiqiang Liu ; O´Neill, Maire ; Swartzlander, Earl E.
Author_Institution :
Inst. of Electron., Commun. & Inf. Technol., Queen´s Univ. Belfast, Belfast, UK
Abstract :
Quantum-dot Cellular Automata (QCA) technology is a promising potential alternative to CMOS technology. To explore the characteristics of QCA and suitable design methodologies, digital circuit design approaches have been investigated. Due to the inherent wire delay in QCA, pipelined architectures appear to be a particularly suitable design technique. Also, because of the pipeline nature of QCA technology, it is not suitable for a complicated control system design. Systolic arrays take advantage of pipelining, parallelism, and simple local control. Therefore, an investigation into these architectures in semiconductor QCA technology is provided in this paper. Two case studies, (a matrix multiplier and a Galois Field multiplier) are designed and analyzed based on both multilayer and coplanar crossings. The performance of these two types of interconnections are compared and it is found that even though coplanar crossings are currently more practical, they tend to occupy a larger design area and incur slightly more delay. A general semiconductor QCA systolic array design methodology is also proposed. It is found that by applying a systolic array structure in QCA design, significant benefits can be achieved particularly with large systolic arrays, even more so than when applied in CMOS-based technology.
Keywords :
CMOS logic circuits; Galois fields; cellular automata; delays; integrated circuit design; integrated circuit interconnections; logic design; matrix multiplication; multiplying circuits; pipeline processing; quantum gates; semiconductor quantum dots; semiconductor quantum wells; systolic arrays; CMOS technology; Galois field multiplier; QCA characteristics; complicated control system design; coplanar crossings; digital circuit design approaches; matrix multiplier; multilayer crossings; parallelism; pipelined architectures; quantum-dot cellular automata technology; semiconductor QCA systolic array design methodology; semiconductor QCA technology; systolic array structure; wire delay; Arrays; Clocks; Delay; Layout; Logic gates; Nonhomogeneous media; Wires; Galois Field multiplier; Quantum-dot Cellular Automata; coplanar crossing; matrix multiplier; multilayer crossover; systolic array;
Journal_Title :
Computers, IEEE Transactions on
DOI :
10.1109/TC.2011.234