DocumentCode :
1403059
Title :
Fast, approximate maximum a posteriori probability parameter estimation
Author :
Harrison, Brian F. ; Tufts, Donald W. ; Vaccaro, Richard J.
Author_Institution :
Naval Underwater Syst. Center, Newport, RI, USA
Volume :
4
Issue :
4
fYear :
1997
fDate :
4/1/1997 12:00:00 AM
Firstpage :
96
Lastpage :
99
Abstract :
In many estimation problems, the set of unknown parameters can be divided into a subset of desired parameters and a subset of nuisance parameters. Using a maximum a posteriori (MAP) approach to parameter estimation, these nuisance parameters are integrated out in the estimation process. This can result in an extremely computationally intensive estimator. This letter proposes a method by which computationally intensive integration over the nuisance parameters required in Bayesian estimation can be avoided under certain conditions. The proposed method is an approximate MAP estimator, which is much more computationally efficient than direct, or even Monte Carlo, integration of the joint posteriori distribution of the desired and nuisance parameters. As an example, we apply the fast algorithm to matched-field source localization in an uncertain environment.
Keywords :
array signal processing; maximum likelihood estimation; parameter estimation; probability; approximate MAP estimator; computationally efficient estimator; desired parameters; fast algorithm; matched-field source localization; maximum a posteriori probability parameter estimation; nuisance parameters; uncertain environment; unknown parameters; Acoustic noise; Array signal processing; Bayesian methods; Data models; Distributed computing; Monte Carlo methods; Parameter estimation; Probability density function; Probability distribution; Random variables;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.566699
Filename :
566699
Link To Document :
بازگشت