DocumentCode :
1403113
Title :
Convergence behavior of the Schur recursion in the Krein space for the J-spectral factorization
Author :
Kim, Kyungsup ; Chun, Joohwan
Author_Institution :
Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea
Volume :
45
Issue :
10
fYear :
2000
Firstpage :
1899
Lastpage :
1903
Abstract :
We present a "Krein-space version" of the Schur recursion for the J-spectral factorization which arises in H-related problems. The most notable difference of the proposed Schur recursion from the ordinary one is that the proposed recursion can handle temporary changes of the inertia during the process. We show that the Schur recursion in the Krein-space converges to a J-spectral factor exponentially under a suitable condition.
Keywords :
Hermitian matrices; convergence; feedback; matrix decomposition; rational functions; H-related problems; J-spectral factorization; Krein space; Schur recursion; convergence behavior; Concrete; Convergence; Noise measurement; Poles and zeros; Riccati equations; Sufficient conditions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2000.880995
Filename :
880995
Link To Document :
بازگشت