DocumentCode :
1403180
Title :
Convergence of constrained model-based predictive control for batch processes
Author :
Lee, Kwang S. ; Lee, Jay H.
Author_Institution :
Dept. of Chem. Eng., Sogang Univ., Seoul, South Korea
Volume :
45
Issue :
10
fYear :
2000
Firstpage :
1928
Lastpage :
1932
Abstract :
The convergence property of constrained model-based predictive control for batch processes (BMPC) is investigated. BMPC is a recently developed control technique that combines iterative learning control with real-time predictive control. It is proven for a general class of linear constrained systems that the tracking error converges to zero as the run number increases.
Keywords :
MIMO systems; batch processing (industrial); discrete time systems; iterative methods; learning systems; linear systems; predictive control; time-varying systems; MIMO systems; batch processes; convergence; discrete time systems; iterative learning control; linear systems; model-based control; predictive control; time varying systems; tracking; Convergence; Predictive control; Predictive models;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2000.881002
Filename :
881002
Link To Document :
بازگشت