• DocumentCode
    1403674
  • Title

    Non-Parametric Nonlinear System Identification: An Asymptotic Minimum Mean Squared Error Estimator

  • Author

    Bai, Er-Wei

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA
  • Volume
    55
  • Issue
    7
  • fYear
    2010
  • fDate
    7/1/2010 12:00:00 AM
  • Firstpage
    1615
  • Lastpage
    1626
  • Abstract
    This paper studies the problem of the minimum mean squared error estimator for non-parametric nonlinear system identification. It is shown that for a wide class of nonlinear systems, the local linear estimator is a linear (in outputs) asymptotic minimum mean squared error estimator. The class of the systems allowed is characterized by a stability condition that is related to many well studied stability notions in the literature. Numerical simulations support the analytical analysis.
  • Keywords
    identification; mean square error methods; stability; asymptotic minimum mean squared error estimator; linear estimator; nonparametric nonlinear system identification; stability condition; Cities and towns; Finite impulse response filter; Kernel; Linear systems; Linearity; Nonlinear systems; Numerical simulation; Parameter estimation; Polynomials; Stability; System identification; Asymptotical analysis; kernel estimation; local polynomial estimation; nonlinear system identification; optimal estimator;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2010.2042343
  • Filename
    5406107