DocumentCode :
1405858
Title :
Variational Gaussian process classifiers
Author :
Gibbs, Mark N. ; MacKay, David J C
Author_Institution :
Cavendish Lab., Cambridge Univ., UK
Volume :
11
Issue :
6
fYear :
2000
fDate :
11/1/2000 12:00:00 AM
Firstpage :
1458
Lastpage :
1464
Abstract :
Gaussian processes are a promising nonlinear regression tool, but it is not straightforward to solve classification problems with them. In the paper the variational methods of Jaakkola and Jordan (2000) are applied to Gaussian processes to produce an efficient Bayesian binary classifier.
Keywords :
Bayes methods; Gaussian processes; covariance matrices; neural nets; pattern classification; Bayesian binary classifier; nonlinear regression tool; variational Gaussian process classifiers; variational methods; Bayesian methods; Covariance matrix; Gaussian approximation; Gaussian distribution; Gaussian processes; Monte Carlo methods; Neural networks; Parametric statistics; Predictive models; Probability distribution;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.883477
Filename :
883477
Link To Document :
بازگشت