DocumentCode :
1409205
Title :
Optimum Alignment of an Inertial Autonavigator
Author :
Jurenka, Frank D. ; Leondes, Cornelius T.
Author_Institution :
Autonetics, Anaheim, Calif.
Issue :
6
fYear :
1967
Firstpage :
880
Lastpage :
888
Abstract :
The performance of an inertial autonavigator can only be as good as the accuracy to which the system is initially aligned. Optical methods of alignment can be performed with high precision; however, this technique requires external equipment and is subject to some physical constraints, such as land-based operation. The general problem discussed here is the use of an automatic azimuth alignment technique known as gyrocompassing. In the use of the gyrocompassing technique to obtain azimuth alignment, accuracies are degraded considerably by two dominant error sources, the level axis controlling gyro drift rate and the imperfections of reference or independent velocity information. Consequently, an optimum performance controller is developed for driving the system in this mechanization and is based on a priori knowledge of the second-order statistics of the system error sources. The performance criteria will be to minimize the mean square azimuth error.
Keywords :
Accelerometers; Aircraft navigation; Azimuth; Computer errors; Control systems; Error correction; Instruments; Motion control; Optical sensors; Velocity control; Accelerometer; Schuler-tuned system; control law; drift rate; error model; gyro; gyrocompassing; inertial system; linear filter; navigation;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.1967.5408659
Filename :
5408659
Link To Document :
بازگشت