DocumentCode :
1409677
Title :
Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm
Author :
Roberts, William J.J. ; Furui, Sadaoki
Author_Institution :
Inf. Technol. Div., Defence Sci. & Technol. Organ., Salisbury, SA, Australia
Volume :
48
Issue :
12
fYear :
2000
fDate :
12/1/2000 12:00:00 AM
Firstpage :
3303
Lastpage :
3306
Abstract :
Maximum likelihood (ML) estimates of K-distribution parameters are derived using the expectation maximization (EM) approach. This approach demonstrates the computational advantages compared with 2-D numerical maximization of the likelihood function using a Nelder-Mead approach. For large datasets, the EM approach yields more accurate estimates than those of a non-ML estimation technique.
Keywords :
iterative methods; maximum likelihood estimation; signal processing; statistical analysis; 2-D numerical maximization; EM approach; K-distribution parameters; ML estimates; expectation-maximization algorithm; maximum likelihood estimation; signal processing; Equations; Helium; Iterative algorithms; Maximum likelihood estimation; Parameter estimation; Radar signal processing; Signal processing; Signal processing algorithms; Synthetic aperture radar; Yield estimation;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.886993
Filename :
886993
Link To Document :
بازگشت