DocumentCode :
1409898
Title :
Tunneling into interface states as reliability monitor for ultrathin oxides
Author :
Ghetti, Andrea ; Sangiorgi, Enrico ; Bude, Jeff ; Sorsch, T.W. ; Weber, Gary
Volume :
47
Issue :
12
fYear :
2000
fDate :
12/1/2000 12:00:00 AM
Firstpage :
2358
Lastpage :
2365
Abstract :
This paper reports experimental data and simulations of low-voltage tunneling in ultrathin oxide MOS devices. When the substrate is very heavily doped, a thermionic barrier is present that opposes the direct tunneling of gate electrons when the applied gate voltage is between 0 V and the flatband voltage. In such conditions, we show that the measured gate current cannot be explained by direct tunneling, but features an additional, dominant component. The temperature dependence of this extra component indicates that it is due to gate electrons tunneling into the anode interface states. By comparing measurements and simulations, it is possible to exploit this extra current to estimate the interface state density within the silicon band gap. In addition, it is shown that this tunneling current component is very sensitive to electrical stress and allows a clear detection of oxide wear out even for stress at very low field. Therefore, it can be adopted as monitor of oxide degradation in ultrathin oxides where the traditional stress induced leakage current due to bulk-oxide traps is not detectable.
Keywords :
MIS devices; energy gap; interface states; semiconductor device reliability; tunnelling; MOS devices; applied gate voltage; band gap; gate current; interface states; low-voltage tunneling; oxide degradation; reliability monitor; temperature dependence; thermionic barrier; ultrathin oxides; Anodes; Current measurement; Electrons; Interface states; MOS devices; Monitoring; Stress; Temperature dependence; Tunneling; Voltage;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/16.887022
Filename :
887022
Link To Document :
بازگشت