Title :
A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes
Author :
Augot, Daniel ; Pecquet, Lancelot
Author_Institution :
Inst. Nat. de Recherche en Inf. et Autom., Le Chesnay, France
fDate :
11/1/2000 12:00:00 AM
Abstract :
This article presents an algorithmic improvement to Sudan´s (see J. Complexity, vol.13, p.180-93, 1997) list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman (see ibid., vol.45, p.432-37, 1999). Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspond to codewords. We prove that these Hensel developments can be found efficiently using Newton´s method. We also describe the algorithm in the special case of Reed-Solomon codes
Keywords :
Newton method; Reed-Solomon codes; algebraic geometric codes; decoding; function evaluation; Hensel lifting; Newton´s method; Reed-Solomon codes; algebraic-geometric codes; codewords; function field; functions reconstruction; interpolation polynomial; list-decoding algorithm; Cost accounting; Decoding; Inspection; Interpolation; Polynomials; Reed-Solomon codes;
Journal_Title :
Information Theory, IEEE Transactions on