DocumentCode
1413033
Title
Distributed Uplink Power Control with Soft Removal for Wireless Networks
Author
Rasti, Mehdi ; Sharafat, Ahmad R.
Author_Institution
Dept. of Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran
Volume
59
Issue
3
fYear
2011
fDate
3/1/2011 12:00:00 AM
Firstpage
833
Lastpage
843
Abstract
In the well-known distributed target-SIR-tracking power control algorithm (TPC), when the system is infeasible (a constrained power vector does not exist to attain target-SIRs), all non-supported users (those who cannot obtain their target-SIRs) transmit at their maximum power. Such users inefficiently consume their energy, and cause interference to others, which increases the number of non-supported users. To deal with this, some non-supported users should decrease their transmit power (the gradual removal problem). We present a distributed power control scheme with gradual soft removal, by which either TPC or OPC (opportunistic power control) is used, depending on whether the ratio of interference-to-path-gain is below or above a threshold that is chosen by each user in a distributed manner. We show that our algorithm converges to a unique fixed-point in both feasible and infeasible systems, and that when the system is infeasible, it results in less outage with significantly less consumed power, as compared to TPC. We also provide a game theoretic analysis of our algorithm by introducing a new pricing when users are selfish. As our algorithm is fully distributed and requires only local information, it can be applied to both cellular and ad hoc networks. Simulation results confirm our analysis.
Keywords
game theory; power control; radio networks; telecommunication control; ad hoc network; cellular network; distributed uplink power control; game theory; gradual soft removal; interference-to-path-gain; maximum power; opportunistic power control; tracking power control algorithm; wireless networks; Distributed power control; gradual removal problem; selective target-SIR-tracking or opportunistic power control algorithm; wireless networks;
fLanguage
English
Journal_Title
Communications, IEEE Transactions on
Publisher
ieee
ISSN
0090-6778
Type
jour
DOI
10.1109/TCOMM.2011.122110.090711
Filename
5675787
Link To Document