DocumentCode :
14137
Title :
Lower Bounds for Quantum Parameter Estimation
Author :
Walter, Michael ; Renes, Joseph M.
Author_Institution :
Inst. for Theor. Phys., ETH Zurich, Zurich, Switzerland
Volume :
60
Issue :
12
fYear :
2014
fDate :
Dec. 2014
Firstpage :
8007
Lastpage :
8023
Abstract :
The laws of quantum mechanics place fundamental limits on the accuracy of measurements and, therefore, on the estimation of unknown parameters of a quantum system. In this paper, we prove lower bounds on the size of confidence regions reported by any region estimator for a given ensemble of probe states and probability of success. Our bounds are derived from a previously unnoticed connection between the size of confidence regions and the error probabilities of a corresponding binary hypothesis test. In group-covariant scenarios, we find that there is an ultimate bound for any estimation scheme, which depends only on the representation-theoretic data of the probe system, and we evaluate its asymptotics in the limit of many systems, establishing a general Heisenberg limit for region estimation. We apply our results to several examples, in particular, to phase estimation, where our bounds allow us to recover the well-known Heisenberg and shot-noise scaling.
Keywords :
parameter estimation; probability; quantum computing; quantum theory; Heisenberg limit; binary hypothesis test; confidence regions; lower bounds; probe states; quantum mechanics; quantum parameter estimation; quantum system; success probability; Entropy; Estimation; Mean square error methods; Parameter estimation; Probes; Quantum mechanics; Testing; Heisenberg limit; Quantum parameter estimation; confidence regions; covariant estimation; hypothesis testing; lower bounds; quantum information theory; representation theory;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2014.2365174
Filename :
6937138
Link To Document :
بازگشت