DocumentCode :
141379
Title :
Generalized volterra kernel model identification of spike-timing-dependent plasticity from simulated spiking activity
Author :
Robinson, Brian S. ; Dong Song ; Berger, Theodore W.
Author_Institution :
Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2014
fDate :
26-30 Aug. 2014
Firstpage :
6585
Lastpage :
6588
Abstract :
This paper presents a methodology to estimate a learning rule that governs activity-dependent plasticity from behaviorally recorded spiking events. To demonstrate this framework, we simulate a probabilistic spiking neuron with spike-timing-dependent plasticity (STDP) and estimate all model parameters from the simulated spiking data. In the neuron model, output spiking activity is generated by the combination of noise, feedback from the output, and an input-feedforward component whose magnitude is modulated by synaptic weight. The synaptic weight is calculated with STDP with the following features: (1) weight change based on the relative timing of input-output spike pairs, (2) prolonged plasticity induction, and (3) considerations for system stability. Estimation of all model parameters is achieved iteratively by formulating the model as a generalized linear model with Volterra kernels and basis function expansion. Successful estimation of all model parameters in this study demonstrates the feasibility of this approach for in-vivo experimental studies. Furthermore, the consideration of system stability and prolonged plasticity induction enhances the ability to capture how STDP affects a neural population´s signal transformation properties over a realistic time course. Plasticity characterization with this estimation method could yield insights into functional implications of STDP and be incorporated into a cortical prosthesis.
Keywords :
Volterra equations; iterative methods; medical signal processing; neural nets; neurophysiology; probability; prosthetics; activity-dependent plasticity; behaviorally recorded spiking events; cortical prosthesis; estimation method; generalized Volterra kernel model identification; generalized linear model; input-feedforward component; input-output spike pairs; model parameters; neural populations; neuron model; output spiking activity; probabilistic spiking neuron; signal transformation properties; simulated spiking data; spike-timing-dependent plasticity; synaptic weight; Data models; Estimation; Feedforward neural networks; Kernel; Neurons; Stability analysis; Timing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE
Conference_Location :
Chicago, IL
ISSN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2014.6945137
Filename :
6945137
Link To Document :
بازگشت