DocumentCode :
1415686
Title :
EM Algorithm State Matrix Estimation for Navigation
Author :
Einicke, Garry A. ; Falco, Gianluca ; Malos, John T.
Author_Institution :
Commonwealth Sci. & Ind. Res. Organ. (CSIRO), Pullenvale, QLD, Australia
Volume :
17
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
437
Lastpage :
440
Abstract :
The convergence of an expectation-maximization (EM) algorithm for state matrix estimation is investigated. It is shown for the expectation step that the design and observed error covariances are monotonically dependent on the residual error variances. For the maximization step, it is established that the residual error variances are monotonically dependent on the design and observed error covariances. The state matrix estimates are observed to be unbiased when the measurement noise is negligible. A navigation application is discussed in which the use of estimated parameters improves filtering performance.
Keywords :
Global Positioning System; Kalman filters; convergence; expectation-maximisation algorithm; matrix algebra; state estimation; EM algorithm state matrix estimation; Kalman filtering; expectation-maximization algorithm convergence; measurement noise; noisy GPS receiver measurements filtering; observed error covariances; residual error variances; Kalman filtering; navigation; parameter estimation;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2010.2043151
Filename :
5411752
Link To Document :
بازگشت