Title :
A theory for total exchange in multidimensional interconnection networks
Author :
Dimakopoulos, Vassilios V. ; Dimopoulos, Nikitas J.
Author_Institution :
Dept. of Comput. Sci., Ioannina Univ., Greece
fDate :
7/1/1998 12:00:00 AM
Abstract :
Total exchange (or multiscattering) is one of the important collective communication problems in multiprocessor interconnection networks. It involves the dissemination of distinct messages from every node to every other node. We present a novel theory for solving the problem in any multidimensional (cartesian product) network. These networks have been adopted as cost-effective interconnection structures for distributed-memory multiprocessors. We construct a general algorithm for single-port networks and provide conditions under which it behaves optimally. It is seen that many of the popular topologies, including hypercubes, k-ary n-cubes, and general tori satisfy these conditions. The algorithm is also extended to homogeneous networks with 2k dimensions and with multiport capabilities. Optimality conditions are also given for this model. In the course of our analysis, we also derive a formula for the average distance of nodes in multidimensional networks; it can be used to obtain almost closed-form results for many interesting networks
Keywords :
hypercube networks; packet switching; distinct messages; distributed-memory multiprocessors; general tori; homogeneous networks; hypercubes; k-ary n-cubes; multidimensional interconnection networks; multiprocessor interconnection networks; multiscattering; single-port networks; total exchange; Broadcasting; Communication standards; Hypercubes; Intelligent networks; Message passing; Multidimensional systems; Multiprocessor interconnection networks; Network topology; Scattering; Tree graphs;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on