DocumentCode :
141821
Title :
Bootstrapping Wikipedia to answer ambiguous person name queries
Author :
Gruetze, Toni ; Kasneci, Gjergji ; Zhe Zuo ; Naumann, Felix
Author_Institution :
Hasso Plattner Inst., Potsdam, Germany
fYear :
2014
fDate :
March 31 2014-April 4 2014
Firstpage :
56
Lastpage :
61
Abstract :
Some of the main ranking features of today´s search engines reflect result popularity and are based on ranking models, such as PageRank, implicit feedback aggregation, and more. While such features yield satisfactory results for a wide range of queries, they aggravate the problem of search for ambiguous entities: Searching for a person yields satisfactory results only if the person in question is represented by a high-ranked Web page and all required information are contained in this page. Otherwise, the user has to either reformulate/refine the query or manually inspect low-ranked results to find the person in question. A possible approach to solve this problem is to cluster the results, so that each cluster represents one of the persons occurring in the answer set. However clustering search results has proven to be a difficult endeavor by itself, where the clusters are typically of moderate quality. A wealth of useful information about persons occurs in Web 2.0 platforms, such as Wikipedia, LinkedIn, Facebook, etc. Being human-generated, the information on these platforms is clean, focused, and already disambiguated. We show that when searching with ambiguous person names the information from Wikipedia can be bootstrapped to group the results according to the individuals occurring in them. We have evaluated our methods on a hand-labeled dataset of around 5,000 Web pages retrieved from Google queries on 50 ambiguous person names.
Keywords :
Web sites; pattern clustering; query processing; search engines; Google queries; Web 2.0 platforms; Web pages; Wikipedia; ambiguous person name query answering; hand-labeled dataset; high-ranked Web page; implicit feedback aggregation; search engines; Electronic publishing; Encyclopedias; Internet; Knowledge based systems; Noise; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Engineering Workshops (ICDEW), 2014 IEEE 30th International Conference on
Conference_Location :
Chicago, IL
Type :
conf
DOI :
10.1109/ICDEW.2014.6818303
Filename :
6818303
Link To Document :
بازگشت