Title :
Combining Multiobjective Optimization With Differential Evolution to Solve Constrained Optimization Problems
Author :
Wang, Yong ; Cai, Zixing
Author_Institution :
Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China
Abstract :
During the past decade, solving constrained optimization problems with evolutionary algorithms has received considerable attention among researchers and practitioners. Cai and Wang´s method (abbreviated as CW method) is a recent constrained optimization evolutionary algorithm proposed by the authors. However, its main shortcoming is that a trial-and-error process has to be used to choose suitable parameters. To overcome the above shortcoming, this paper proposes an improved version of the CW method, called CMODE, which combines multiobjective optimization with differential evolution to deal with constrained optimization problems. Like its predecessor CW, the comparison of individuals in CMODE is also based on multiobjective optimization. In CMODE, however, differential evolution serves as the search engine. In addition, a novel infeasible solution replacement mechanism based on multiobjective optimization is proposed, with the purpose of guiding the population toward promising solutions and the feasible region simultaneously. The performance of CMODE is evaluated on 24 benchmark test functions. It is shown empirically that CMODE is capable of producing highly competitive results compared with some other state-of-the-art approaches in the community of constrained evolutionary optimization.
Keywords :
evolutionary computation; optimisation; CMODE; Cai-Wang method; constrained optimization evolutionary algorithm; differential evolution; multiobjective optimization; search engine; solution replacement mechanism; trial-and-error process; Benchmark testing; Diversity reception; Evolutionary computation; Pareto optimization; Proposals; Vectors; Constrained optimization problems; constraint-handling technique; differential evolution; multiobjective optimization;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2010.2093582