DocumentCode :
1420709
Title :
A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration
Author :
Chen, Jian ; Tian, Jie ; Lee, Noah ; Zheng, Jian ; Smith, R. Theodore ; Laine, Andrew F.
Author_Institution :
Inst. of Autom., Chinese Acad. of Sci., Beijing, China
Volume :
57
Issue :
7
fYear :
2010
fDate :
7/1/2010 12:00:00 AM
Firstpage :
1707
Lastpage :
1718
Abstract :
Detection of vascular bifurcations is a challenging task in multimodal retinal image registration. Existing algorithms based on bifurcations usually fail in correctly aligning poor quality retinal image pairs. To solve this problem, we propose a novel highly distinctive local feature descriptor named partial intensity invariant feature descriptor (PIIFD) and describe a robust automatic retinal image registration framework named Harris-PIIFD. PIIFD is invariant to image rotation, partially invariant to image intensity, affine transformation, and viewpoint/perspective change. Our Harris-PIIFD framework consists of four steps. First, corner points are used as control point candidates instead of bifurcations since corner points are sufficient and uniformly distributed across the image domain. Second, PIIFDs are extracted for all corner points, and a bilateral matching technique is applied to identify corresponding PIIFDs matches between image pairs. Third, incorrect matches are removed and inaccurate matches are refined. Finally, an adaptive transformation is used to register the image pairs. PIIFD is so distinctive that it can be correctly identified even in nonvascular areas. When tested on 168 pairs of multimodal retinal images, the Harris-PIIFD far outperforms existing algorithms in terms of robustness, accuracy, and computational efficiency.
Keywords :
affine transforms; bifurcation; blood vessels; eye; feature extraction; image matching; image registration; medical image processing; Harris-PIIFD; adaptive transformation; affine transformation; bilateral matching; highly distinctive local feature descriptor; image intensity; image rotation; partial intensity invariant feature descriptor; robust automatic retinal image registration; vascular bifurcations; Harris detector; local feature; multimodal registration; partial intensity invariance; retinal images; Algorithms; Cluster Analysis; Diagnostic Techniques, Ophthalmological; Fluorescein Angiography; Humans; Image Interpretation, Computer-Assisted; Retina; Retinal Vessels;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2010.2042169
Filename :
5416285
Link To Document :
بازگشت