DocumentCode :
1423791
Title :
Outdoor Propagation Channel Modeling in Foliage Environment
Author :
Liang, Jing ; Liang, Qilian
Author_Institution :
Dept. of Electr. Eng., Univ. of Texas at Arlington, Arlington, TX, USA
Volume :
59
Issue :
5
fYear :
2010
fDate :
6/1/2010 12:00:00 AM
Firstpage :
2243
Lastpage :
2252
Abstract :
Foliage is a rich scattering environment that is slowly time varying. Most previous investigations in foliage models center on the statistical modeling of clutters and targets. Ideally, it would be desirable to characterize the nature of the propagation channel in foliage; however, it has not been investigated in detail up until now. This paper studies the problem of nonline-of-sight (NLOS) channel modeling based on extensive data collected using both narrowband and ultrawideband (UWB) radars. The modeling adopts the CLEAN algorithm, in which the channel-impulse response (CIR) is accomplished. It is observed that the multipath contributions arriving at the receiver are grouped into clusters. The arrival of clusters can be modeled as a Poisson process, whereas within each cluster, subsequent multipath contributions or rays also arrive according to a Poisson process. However, the arrival rate is quite different, along with the carrier frequency. It is also proposed that the amplitude of multipath channels can more accurately be characterized by a log-logistic distribution (LLD) other than commonly used clutter models such as the log-normal, the Weibull, or the Rayleigh fading model. The proposed foliage channel model is extendable to other outdoor environments. This is a great advantage for the specification and development of future wireless systems.
Keywords :
electromagnetic wave scattering; multipath channels; radar clutter; radiowave propagation; statistical analysis; stochastic processes; transient response; ultra wideband radar; CLEAN algorithm; Poisson process; channel impulse response; clutter; foliage environment; log-logistic distribution; multipath channels; narrowband radars; nonline of sight; outdoor propagation channel modeling; statistical modeling; target; ultrawideband radar; Channel modeling; foliage; goodness-of-fit; log-logistic; narrowband; outdoor; ultrawideband (UWB);
fLanguage :
English
Journal_Title :
Vehicular Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9545
Type :
jour
DOI :
10.1109/TVT.2010.2043697
Filename :
5419052
Link To Document :
بازگشت