Title :
Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications
Author :
Sarto, Maria Sabrina ; D´Aloia, Alessandro Giuseppe ; Tamburrano, Alessio ; De Bellis, Giovanni
Author_Institution :
Dept. of Astronaut., Sapienza Univ. of Rome, Rome, Italy
Abstract :
Graphite nanoplatelets (GNPs) are bidimensional carbon nanostructures consisting of stacks of graphene sheets, having thickness in the range from one up to a few tens of nanometers, and lateral linear dimension in the micrometer range. These nanostructures represent a good candidate to replace carbon nanotubes in composites for electromagnetic applications. This paper proposes a new model based on the Maxwell-Garnett approach to compute the effective complex permittivity of GNP-filled nanocomposites. The effect of the dimensional probabilistic distribution of the nanofiller is investigated. To this purpose, an extensive experimental characterization of the morphological and physical properties of the GNPs after synthesis is performed. The proposed model is validated by comparison with the measured effective permittivity of GNP-composites with different concentrations, and it is used for the design of radar-absorbing materials in the frequency range 1-18 GHz.
Keywords :
carbon nanotubes; electromagnetic compatibility; graphite; nanocomposites; permittivity measurement; probability; EMC; GNP-filled nanocomposite; Maxwell-Garnett approach; bidimensional carbon nanostructure; complex permittivity; dimensional probabilistic distribution; frequency 1 GHz to 18 GHz; graphene sheet; graphite nanoplatelet-based composite; lateral linear dimension; nanofiller; Conductivity; Economic indicators; Nanocomposites; Permittivity; Probabilistic logic; Probes; Effective permittivity; electromagnetic shielding; graphene; graphite nanoplatelets (GNPs); nanocomposites; radar-absorbing materials (RAMs);
Journal_Title :
Electromagnetic Compatibility, IEEE Transactions on
DOI :
10.1109/TEMC.2011.2178853